啊错错错
考虑以下级数乘积
\[\left\{1+\sum_{m=1}^\infty(-1)^m\dfrac{x^{2m}}{2^{2m}(m!)^2}\right\}^2.\]
为此考虑
$$\sum_{m=0}^n(\mathrm C_n^m)^2=\mathrm C_{2n}^n.$$
注意到\(\frac{(1+x)^{2n}}{x^n}\)和\(\frac{(1+x)^{2n}}{x^n} \),
因此得到
\begin{align*}\sum_{n=2}^\infty\sum_{i=1}^{n-1}\dfrac1{2^{2i}2^{n-i}(i!)^2[(n-i)!]^2}(-1)^nx^{2n}&=\sum_{n=2}^\infty(-1)^n\dfrac{(2n)!}{2^{2n}(n!)^4}x^{2n},\\&=\int_0^n[\beta(m,n-m)]^{-2}\,\mathrm dt.\end{align*}
2022-06-09 03:09
2022-06-09 02:52
2022-06-09 02:52
2022-06-09 02:51